Yahoo Hỏi & Đáp sẽ ngừng hoạt động vào ngày 4 tháng 5 năm 2021 (Giờ Miền Đông nước Mỹ) và từ nay, trang web Yahoo Hỏi & Đáp sẽ chỉ ở chế độ đọc. Các thuộc tính hoặc dịch vụ khác của Yahoo hay tài khoản Yahoo của bạn sẽ không có gì thay đổi. Bạn có thể tìm thêm thông tin về việc Yahoo Hỏi & Đáp ngừng hoạt động cũng như cách tải về dữ liệu của bạn trên trang trợ giúp này.
Proof of E(X + Y) explanation of step?
1) In general, do we have 1 sigma for each random variable?2) In the fourth line, we can take the x (which is summed over i) out of the summation operator over j. Is this always the case, because there's no j attached to the x term?
3) In the fifth/last line, why does the Pj disappear, and we're left with the Pi probability mass function part thing?
Sorry for the format, Yahoo is mushing everything into one paragraph even when I've indented before hand!
1 Câu trả lời
- ?Lv 72 năm trướcCâu trả lời yêu thích
1) In general, do we have 1 sigma for each random variable?
Yes, you have to cover all combinations
so if n = m =5
you needs
(x(1), y(1) ) , (x(1), y(2) ) , (x(1), y(3) ) , (x(1), y(4) ) , (x(1), y(5) )
(x(2), y(1) ) , (x(2), y(2) ) , (x(2), y(3) ) , (x(2), y(4) ) , (x(2), y(5) )
(x(3), y(1) ) , (x(3), y(2) ) , (x(3), y(3) ) , (x(3), y(4) ) , (x(3), y(5) )
(x(4), y(1) ) , (x(4), y(2) ) , (x(4), y(3) ) , (x(4), y(4) ) , (x(4), y(5) )
(x(5), y(1) ) , (x(5), y(2) ) , (x(5), y(3) ) , (x(5), y(4) ) , (x(5), y(5) )
You can see you won't cover all combinations without
a sigma for each variable.
2) In the fourth line, we can take the x (which is summed over i) out of the summation operator over j. Is this always the case, because there's no j attached to the x term?
Yes,
x_sub_i is a constant as you vary j.
y_sub_j is not a constant as you vary j, but they
must have used some rule to justify
reversing the order of the summation statement.
I assumed there must be a rule that allows that.
3) In the fifth/last line, why does the Pj disappear, and we're left with the Pi probability mass function part thing?
See image
I'm not sure I don't a good job of explaining
but if you add the probabilities for P(x_i, y_j) for all value of y_j
it equals the probability of P(x_i)
remember, if you flip a coin and then roll a dice,
P(heads) = P(heads , roll a 1) + P(heads, 2) + P(head,3) + P(heads,4)
+ P(heads,5) + P(heads, 6)